

- About

Witodek Krakowski

Technical and Organizational Trainer
www.refactoring.pl

Workshops

N7
A

Refactoring

Whatis

SSSSSS

)

Refactoring Definition

(verb) to restructure software by applying a
series of refactorings without changing its
observable behaviour

Martin Fowler - Refactoring (2018)

© Copyright 2019 www.refactoring.pl

Refactoring Definition

(noun) A change made to the internal
structure of the software to make it easier to
understand and cheaper to modify without
changing its observable behaviour

Martin Fowler - Refactoring (2018)

© Copyright 2019 www.refactoring.pl

Noticing

the Pyramld
sssss 2

o

A
100+ Workshops

Afterthoughts

Space between two main books...

R EFACTORING

TO PATTERNS

JOSHUA KERIEVSKY

m—u {I

SECOND EDITION

on and Mart, Z
d by John Brant and Don Roberts

© Copyright 2019 www.refactoring.pl

Refactoring
by Martin Fowler

Great catalogue of refactorings
One big sample at the beginning
Java/Javascript

This book is a great summary but it is like
encyklopedia / dictionary to me

© Copyright 2019 www.refactoring.pl

Refactoring to Patterns
by Joshua Kerievsky

Expands the subject a lot R EFACTORING
Contains lots of smaller samples TO PATTERNS

Requires reading a few times..

JOSHUA KERIEVSKY

But each sample is already prepared to
refactoring towards given design pattern

This is rarely the case in legacy code

© Copyright 2019 www.refactoring.pl

Working with Legacy Code
by Michael Feathers

Different perspective
Also a kind of encyklopedia
Allows to find a starting point !!!

WORKI NG
Does it contain a bigger vision among - F F EC T I V E I.Y

lots of useful & invaluable fixes? WITH

© Copyright 2019 www.refactoring.pl

REFACTORING

Basics...
Arrangement...

order-n

REFACTORING
TO PATTERNS

-
4 i
< Yok

WORKING
EFFECTIVELY
WITH
LEGACY CODE

Michael C. Feathers

© Copyright 2019 www.refactoring.pl

Pyramid of
refactoring

Some theory at the beginning

)

So simple?

" PATTERNS

METHODS
FLOW

© Copyright 2019 www.refactoring.pl

5

Flow

Nested Conditions
Nested Loops

Many Local Variables
Ambiguous Names
Single Exit Points

Can you read your code like a good book }f%
from the top and understand it quickly?

© Copyright 2019 www.refactoring.pl

Methods

Levels of Abstraction
Extract / Remove Parameter
Cohesion

Can you understand quickly what a method

does at single level of abstraction? ?

© Copyright 2019 www.refactoring.pl °

Classes

Extract Delegate
Extract Base Class
Extract Subclass
Extract field/constant

Do your classes have distinct areas of
responsibility?

© Copyright 2019 www.refactoring.pl

Patterns

Abstractions
Interfaces

Dependencies defined as contract instead
of implementation details knowledge

© Copyright 2019 www.refactoring.pl

Architectures

Packages
Modules
(Micro) Services

Can your architecture grow and scale
easily by adding new or dividing existing
components?

© Copyright 2019 www.refactoring.pl

INTEGRATIONT.

Levels of abstraction

Testing and Refactoring Twins

METHODS }
} UNIT TESTS
© Copyright 2019 www.refactoring.pl °

Live
Refactoring

You need to experience in order to
understand

)

Real Estates
Catalogue

© Copyright 2019 www.refactoring.pl

| RealEstateFinder
- repository : RealEstate[]

+ ProductFinder(List<RealEstate> ...)
+ byBelowArea(float maxArea) : List<RealEstate>

([J (] - » . g
I n It I q I P ro ect + byMaterial(Material material) : List<RealEstate>
j EEE + byMaterialBelowArea(Material, maxArea) : List<RealEstate>
+ byPlacement(Placement placement) : List<RealEstate>

+ byAvoidingPlacement(Placement) : List<RealEstate>

e

Contains

RealEstate

+ RealEstate(...
R EFACTORING ()

TO PATTERNS + getID() : String
JosHuA KERIEVSKY + getBUildingArea() - ﬂoat

+ getPlacement() : EstatePlacement

+ getMaterial() : EstateMaterial

+ getType() : EstateType

© Copyright 2019 www.refactoring.pl

It's not me, e

[atory i > ———
et e e |
, = p,nm"’"' 2("“" maxArea) “q<kh““'~iat,>
kw‘ff . =
s e e q m EEE + e ‘(m,c.—;;l material) : List< uc.:ll»u.n._.,
e
» byt

geowarea(Material, MaxAre,) . Ust<Rege
et

4 "'MN t placement
cemen): U“‘R“"Zstete;

' mm(m.enl(”"
' wAvnIdho"u“m‘-"'(p‘xe‘nent) + List<RealEstates

?

Contams

RealEstate
‘ Rﬂ‘lt “dle(¥)

" 9stiny) , String

R EFACTORING
TO PATTERNS

* Netp,
% "M"‘ql\roa() : float
JOSHUA KERIEVSKY

4
eement() : Ectataplacem®”
¥ 9et 3 :
‘y :‘“‘cn‘u() : ksl.ﬂcu-ﬂ‘:"""
LY
YPe() ; EstateType

© Copyright 2019 www.refactoring.pl

Live .ﬁ.

[
a

Refactoring =

AP,

o

We are climbing up the pyram c':l

\ /

y - W1

METHODS

d——
=

© Copyright 2019 www.refactoring.pl

Lots of ways to refactor...

Specs classes achieved
- Create Class (manually)

- ExtractDelegate [Class

- Extract Parameter Object

© Copyright 2019 www.refactoring.pl

Live
Refactoring

TERMINAL ,°

| RealEstateFinder
- repository : RealEstate[]

+ RealEstateFinder(List<RealEstate> ...)

+ bySpec(Spec spec)

CREATES / USES

Spec

t + isSatisfiedBy(RealEstate property) : bool !V
~

T AQATAE U

EXPRESSIONS, 4 ¢ B : \ N Y \
’ ’ ’ -, ! \ N
, ’ 4 7 I A Implements
mplements s . Implements Implements
’ 7 Implements' %
’ ‘o .
’ 4 !
7 I
4 4 I 1
P ImpI'ements ,l Implements 1
P 2
’ ’ ! NotSpec AndSpec OrSpec
MaterialSpec ./ | BelowAreaSpec - Spec spec LTS T s

- Material material - float buildingArea P s

R EFACTORING ‘, = | = [NotSpec(Specspec) | |+ andspec(Spec(]) | | +Orpec(specl) |

+ isSatisfiedBy(... + isSatisfiedBy(... i i ; FL | 3
TO PATTERNS L y(.-) f v(-) Esahorbvce) + isSatisfiedBy(...) | + isSatisfiedBy(...) ‘
KERIEVSKY , I |
Josflon 10 ’ ' NON-TERMINAL EXPRESSIONS
| BelowPriceSpec ‘ PlacementSpec

- PriceDao pricing

+ isSatisfiedBy(...)

7 d Ma
John Brant and D

© Copyright 2019 www.refactoring.pl

- Placement placement

+ isSatisfiedBy(...)

S.O.L.I.D.In

..............

)

S.0.L.L.D. Refactorings

Single Responsibility Principle

BelowAreaSpec, MaterialSpec, ..
Interface Segregation Principle m
Spec
Open Closed Principle METHODS
ProductFinder.bySpec(Spec spec)
Dependency Inversion Principle }f} FLOW
plrefactoring.search ProductFinder
plrefactoring.search.Spec

plrefactoring.search.spec.ColorSpec

© Copyright 2019 www.refactoring.pl °

PYRAMID OF REFACTORING

Dependency Inversion Principle

Open Closed Principle

| Interface Segregation Principle
Liskov Substitution Principle
Single Responsibility Principle
METHODS
FLOW

© Copyright 2019 www.refactoring.pl e

Make it

Knowledge is the beginning...

Share new experience

Emotions come first after each

Workshop
Conference
Meeting

New Experience

.. when you've learned something new

© Copyright 2019 www.refactoring.pl

Get new skills

Knowledge and skills are needed to keep
the emotions

Review current skills
Make a learning plan
Introduce new skills step by step

© Copyright 2019 www.refactoring.pl

Emotions and Mind

© Copyright 2019 www.refactoring.pl

Trigger [Enable
refactoring

SA8NMIC l'dy

Code review opportunities ~% science,’
Readability f Technology
Testability - ureate who hes
Extendibility syeloped the
Design

Teamwork - each team member has equals
rights to teach and learn

© Copyright 2019 www.refactoring.pl °

Visualize
Quality Activities

To A Code Rework / Testing / Done
Do Review | Refactoring PVA(ele=To)&1y[-]

e v p

© Copyright 2019 www.refactoring.pl

Let's
summarize

What is the gap and its fulfillment? ‘))

Pyramid is between
the books

R EFACTORING
TO PATTERNS

METHODS

SECOND EDITION

© Copyright 2019 www.refactoring.pl

Each Sample

Placement SAMPLE — >
SAMPLE

SAMPLE (=i
METHODS

pa FLOW
SECOND EDITION
© Copyright 2019 www.refactoring.pl °

SAMPLE =i

Each Sample
Embracement

EACH

BIG .
SAMPLE

R EFACTORING
TO PATTERNS

METHODS

© Copyright 2019 www.refactoring.pl

Not named explicitly...

R EFACTORING
TO PATTERNS

METHODS
FLOW

... but joining core books!

© Copyright 2019 www.refactoring.pl e

METHODS

© Copyright 2019 www.refactoring.pl

> Thanks!

WWW. refactorlng_p_
- Blog
- IT Trainings
- Talks

a @wlodekkr
Wiodek Krakowski

http://www.refactoring.pl

