
Stream Processing
Essentials

Presented by: Vladimír Schreiner <vladimir@hazelcast.com>
Nicolas Frankel <Nicolas@hazelcast.com>

Introduction

Lab Setup
Requirements

• Java 8 JDK or higher

• An IDE like IntelliJ
IDEA, Eclipse,
Netbeans

• Maven

Steps

1/ Download the lab source
github.com/hazelcast/hazelcast-jet-training

2/ Import it to your IDE as a Maven
project

3/ Build it to download dependencies!

https://github.com/hazelcast/hazelcast-jet-training

Course Objectives

• When you leave this class, you will be able to

• Define stream processing and explain when to use it

• List the building blocks of a streaming application

• Transform, match, and aggregate streaming data

• Perform continuous processing of time-series data

• Scale, deploy, and operate streaming apps

Agenda
Introductions 15 minutes

Stream Processing Overview 15 minutes

The Building Blocks 30 minutes

Break 5 minutes

Transforming a Data Stream (lab) 25 minutes

Enrichment (lab) 30 minutes

Break 15 minutes

Aggregations and Stateful Streaming (3 labs) 50 minutes

Break 5 minutes

Scaling and Operations (lab – no coding) 35 minutes

Q&A and Conclusion 15 minutes

Warning - Lambdas Ahead!
int sum = streamCache().collect(

DistributedCollector.of(
() -> new Integer[]{0},
(r, v) -> r[0] += v.getValue(),
(l, r) -> {

l[0] += r[0];
return l;

},
a -> a[0]

)
); This is the kind of code we’ll be looking at.

If you don’t understand it, you won’t get
much out of this class.

Stream Processing
Overview

System Health Monitoring

DB

App 1

App 2

10:22:01 12ms
10:22:01 15ms
10:22:02 10ms
…

10:22:00 150ms
10:22:02 159ms
10:22:02 170ms
…

A: SELECT avg(responseTime)
FROM logs
WHERE timestamp
BETWEEN NOW()
AND NOW() - INTERVAL 1 DAY;

B: ...
AND NOW() - INTERVAL 1 SECOND;

1

1

2

B / A > 1,1?3

System Health Monitoring - Challenges

• Scale

• 1k records per sec -> 86 mio per day

• Increases latency

• Timing

• How to coordinate data loading and querying?

• When to submit the query?

• Network transfer times may vary

• Timestamps from various sources -> unordered data

• Balancing correctness and latency

Batch Processing

Use-cases

Post-mortem analysis

ML training/data science

Offline transaction processing

Extract Transform Load (ETL)

Process Use

Linear process
No overlap = huge latency!

Collect

Tools

Hadoop

Hive for SQL people

Often custom

Stream Processing

Real world data doesn’t
come in batches!

Continuous
Processing

Continuous
Use

Infinite Data

Characteristics

Querying made pro-active

Push instead of pull

Pre-processing for database

Benefits

Low latency

Continuous programming
model

Deals with time - event-time,
watermakrs, late data

Stream Processing and Databases

• Database allows clients to pull data by querying it’s state

• Stream processor runs a continuous query and pushes
updates to consumers

• Continuous programming model maps better to reality

• Things happen continuously in real world, not in batches.

Streaming is “Smart ETL”

Processing

Ingest
In-Memory

Operational
Storage

Combine
Join, Enrich,

Group,
Aggregate

Stream
Windowing,
Event-Time
Processing

Compute
Distributed
and Parallel

Computation

Transform
Filter, Clean,

Convert

Publish
In-Memory,
Subscriber

Notifications

Notify if response
time is 10% over 24

hour average, second
by second

What Stream Processing Brings

… to traditional ETL (data pumps) Scale

… to batch analytics (MapReduce) Continuous programming, reduces
latency

… to JMS topic with Java worker Fault-tolerance, higher level
programming. model

… to CEP Scale

… to DB triggers Time as first-class citizen

Use Case: Continuous ETL

• ETL - Data Integration

• ETL in the 21st Century

• Maintains the derived data (keeps it in sync)

• Performance - adapt data to various workloads

• Modularization - microservices own the data

• Why continuous ETL?

• Latency

• Global operations (no after hours)

• Continuous resource consumption

Use Case: Analytics and Decision Making
• Real-time dashboards

• Stats (gaming, infrastructure monitoring)

• Decision making

• Recommendations

• Prediction - often based on algorithmic prediction (push
stream through ML model)

• Complex Event Processing

Use Case: Event-Driven Applications

• Event Sourcing

• Sequence of change events as a shared database.

• Simpler than replicating every database to every service

• Apps publish and subscribe to the shared event log.

• App state is a cache of the event store

• Stream processor is the event handler

• Consumes events from the event store

• Updates the application state

DEMO: How do people feel about crypto?
https://github.com/hazelcast/hazelcast-jet-demos

1. Get Tweets

2. Filter out irrelevant ones

3. Predict the sentiment

4. Compute avg per cryptocurrency in last 30s / 5m

https://github.com/hazelcast/hazelcast-jet-demos

Key Points

• Stream processing is an evolution of the traditional data
processing pipeline

• Continuous programming model for infinite data sets

• Pre-process data before storing / using it -> reduces access times
when you need the results

• Processed results kept in sync with latest updates

• Driven by data – no external coordination

• Stays big-data ready (design decision for most streaming tools)

Time Check

+0:30
Break in 0:30

The Building Blocks

Stream Processor

Data SinkData Source

The Big Picture

Hazelcast IMDG
Map, Cache, List,

Change Events

Live Streams
Kafka, JMS,

Sensors, Feeds

Databases
JDBC, Relational,

NoSQL, Change Events

Files
HDFS, Flat Files,

Logs, File watcher

Applications
Sockets

Ingest
In-Memory

Operational Storage

Combine
Join, Enrich,

Group, Aggregate

Stream
Windowing, Event-Time

Processing

Compute
Distributed and Parallel

Computations

Transform
Filter, Clean,

Convert

Publish
In-Memory, Subscriber

Notifications

Stream Stream

Pipeline and Job

Pipeline

• Declaration (code) that defines and
links sources, transforms, and sinks

• Platform-specific SDK
(Pipeline API in Jet)

• Client submits pipeline to the
Stream Processing Engine (SPE)

Job

• Running instance of pipeline in SPE

• SPE executes the pipeline

• Code execution

• Data routing

• Flow control

• Parallel and distributed execution

Declarative Programming Model
• Compare counting words in Java 8

• Imperative - Iterators (user controls the flow)

• Declarative – Java Streams (code defines logic, not flow)

final String text = "...";
final Map<String, Long> counts = new HashMap<>();

for (String word : text.split("\\W+")) {
Long count = counts.get(word);
counts.put(count == null ? 1L : count + 1);

}

Map<String, Long> counts = lines.stream()
.map(String::toLowerCase)
.flatMap(line -> Arrays.stream(line.split("\\W+")))
.filter(word -> !word.isEmpty())
.collect(Collectors.groupingBy(word -> word, Collectors.counting()));

Why Pipelines Use Declarative

• ”What” vs. “How”

• SPE handles the “how”

• Data routing

• Partitioning

• Invoking pipeline stages

• Running your pipeline in parallel

The SPE: Hazelcast Jet

• Distributed data processing engine

• Supports bounded (batch) and unbounded
(stream) data sources

• Java API to define the processing (Pipeline API)

• Built on Hazelcast IMDG

• Single embeddable JAR

• Open-source, Cloud-native (managed srv. for IMDG parts)

• Java SDK

• JDK 8 minimum

Hazelcast IMDG

• IMDG = “In-Memory Data Grid”, distributed in-memory data
structures with computational capabilities

• Map, List, Queue

• Querying, Entry Processor

• Executor Service

• Lock, Semaphore, AtomicLong, Unique ID generator, HyperLogLog..

• Used as cache, operational database and for coordination

• Clients for Java, Scala, C++, C#/.NET, Python, Node.js, Go

• Good foundation for distributed computing

What Distributed Means to Hazelcast

• Multiple nodes (cluster)

• Scalable storage and performance

• Elasticity (can expand during operation)

• Data is stored partitioned and replicated

• No single point of failure

Jet Does Distributed Parallel Processing
• Jet translates declarative code to a DAG (Task Parallelism)

Pipeline p = Pipeline.create();
p.drawFrom(Sources.<Long, String>map(BOOK_LINES))

.flatMap(line -> traverseArray(line.getValue().split("\\W+")))

.filter(word -> !word.isEmpty())

.groupingKey(wholeItem())

.aggregate(counting())

.drainTo(Sinks.map(COUNTS));

Data
Sink

Data
Source

from aggrmap filter to

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Node 1

Jet Does Distributed Parallel Processing

read cmb
map

+
filter

acc sink

read cmb
map

+
filter

acc

Node 2

read cmb
map

+
filter

acc

sinkread cmb
map

+
filter

acc

Data
Source

Data
Sink

sink

sink

All the Building Blocks

Pipeline: declarative, JDK

Stream Processing Engine
Source Sink

Stream Stream

Stretch Break

+1:00
5 Minute Break
Please do not leave the room

Transforming a Data
Stream

Checking Your Lab Setup
• Download the lab source

github.com/hazelcast/hazelcast-jet-
training

• Import it to your IDE as a Maven
project

• Build it to download dependencies!

• Open the essentials module

• Remember our building blocks?

• API follows same pattern

Pipeline API

Source Sink
SPE

(Transform)

Pipeline p = Pipeline.create();

//specify source(s) for stream
p.drawFrom(Sources.<String>list("input"))

//specify transform operation(s)
.map(String::toUpperCase)

//specify sink(s) for transform results
.drainTo(Sinks.list("result"));

• drawFrom and drainTo require a source as a parameter

• Libraries with sources and sinks available out-of-the-box

• Data generators for quick start and testing

Sources and Sinks

p.drawFrom(Source definition)

com.hazelcast.jet.pipeline.Sources

com.hazelcast.jet.pipeline.Sinks

com.hazelcast.jet.pipeline.test.TestSources

• Turn off event-time processing for now

• We’ll explain this when talking about windowing and event-time
processing

We’ll Start Simple

p.drawFrom(Source definition)
.withoutTimestamps()

Interacting with the Cluster

// Create new cluster member

JetInstance jet = Jet.newJetInstance();

// Connect to running cluster

JetInstance jet = Jet.newJetClient();

Client/ServerEmbedded

Java API

Application

Java API

Application

Java API

Application
Java API

Application

Java API

Application

Java API

Application

Java API

Application

We use
embedded in

the labs

Submitting the Pipeline
• Use the cluster handle

• Submit the job

• Submit and return

• Submit and block

• Stop cluster when processing
is done

jet.newJob(pipeline);

jet.newJob(pipeline).join();

public static void main (String[] args) {

JetInstance jet = Jet.newJetInstance();

Pipeline p = buildPipeline();

try {

jet.newJob(p).join();

}

finally {

jet.shutdown();

}

}

Lab 1: Filter Records from Stream

• Step 1: Run your first streaming job

• Open Lab 1

• Explore the boilerplate

• Run the lab and follow results

Basic Transformation Operations

• Filter: discards items that don’t match the predicate

• Data cleaning, reformatting, etc.

• Map: transforms each item to another item

• Trim records to only required data

• flatMap: transforms each item into 0 or more output items

• Example: separate a line of text into individual words

Transformation Examples
• NewPowerCo has installed smart meters at all homes in a service

area

• Meters stream constant usage data: address, region code, kw/hour
consumption, etc.

• Filter example

• Keep all records exceeding a given kw/hour rate

• Map example

• Strip addresses – keep only region code and kw/hour data

• flatMap example

• Separate record with multiple measurements to multiple records

Lab 1: Filter Records from Stream

• Step 2: Filter out odd numbers

• Step 3: Read stream from
a file instead of the
generator

• Use Sources.fileWatcher
source

What We Learned…

• The Pipeline

• Generate data for testing: TestSources

• Basic connectors: fileWatcher, logging sink

• Basic operators: filter, map, flatMap

• Lambdas (serializable)

• Embedded (in-process) JetInstance

• Obtaining a cluster handle and submitting the job

Hot Cache

• Offload data to a distributed cache

• Enrichment

• In-memory compute

• Jet brings:

• Speed (works in parallel)

• Fault Tolerance

• Declarative API - Focus on business
logic, not on infrastructure / integration

ETL

Cache, Map, List

System of Record

Kafka

Databases

CDC

Files

Hadoop

Honorable Mentions

• Connectors in Jet Library

• Hazelcast, Journal, Kafka, HDFS, JMS, JDBC, Elasticsearch,
MongoDB, InfluxDB, Redis, Socket, File

• CDC connectors using Debezium (4.0 January)

• Custom connectors

• Builders: see the code samples

• Examples: Twitter Source, REST JSON Service Source, Web Camera
Source

• Pipeline can have multiple sources, sinks and branches

https://github.com/hazelcast/hazelcast-jet-demos/tree/master/cryptocurrency-sentiment-analysis
https://github.com/hazelcast/hazelcast-jet-demos/blob/master/flight-telemetry/src/main/java/com/hazelcast/jet/demo/FlightDataSource.java
https://github.com/hazelcast/hazelcast-jet-demos/blob/master/realtime-image-recognition/src/main/java/WebcamSource.java
https://docs.hazelcast.org/docs/jet/latest/manual/

Time Check

+1:30
Break in 0:30

Enrichment

Enriching the Stream
• Do a lookup to enrich the stream

• Similar to relations in RDBMS

Date_id
Store_id
Product_id
Units_sold

sales_fact

Id
Date
Day
Day_of_week
Month
Month_name
Quarter
Quarter_name
Year

dim_date

Id
Store_number
State_Province
Country

dim_store

Id
EAN_code
Product_name
Brand
Product_category

dim_product

Enrichment Options
• Local map

• Advantage: fast, hard-coded

• Disadvantage: change = redeploy

• Remote service lookup (database, RPC call)
• Advantge: always up to date

• Disadvantage: slow retrieval

• Cache local the custer
• Hazelcast Jet contains rich distributed cache (thanks to embedded

IMDG)

Caching in Hazelcast Jet

• Jet comes with distributed in-memory data structures

• Implements Java collections and JCache

• Map, List, Queue

• Data partitioned and distributed across the cluster

• Elastic, scales with cluster size (more nodes = more space)

• Read/Write through for databases

Jet Client

Lab - Architecture

Jet Cluster

lookup-table

Jet Job

1 Create the cache

2

3 Submit the job

Populate the cache
cache.put(key, value) 4

Lookup cache for
every stream record

Enrichment API in Jet
items.mapUsingIMap(

// the name of the lookup cache in the cluster

"enriching-map",

// how to obtain foreign key from the stream?

item -> item.getDetailId(),

// how to merge the stream with looked up data

(Item item, ItemDetail detail)

-> item.setDetail(detail)

)

Lab 2: Enrich the Stream

• Enrich a trade stream using the cache

• Randomly-generated “trade“ stream

• Replace ticker code with company name

• IMap (distributed map) caches name table

Streaming data:
Ticker code
Quantity
Price

Table of company names

Enriched trade:
Company name
Quantity
Price

Lab 2: Enrich the Stream

• Enrich a trade stream using the cache

• Use the Trade generator as a source

• sources.TradeSource.tradeSource()

• Trade contains the symbol - a foreign key, referring to a company

• Lookup company name

• Convert Trades to EnrichedTrades by enriching it with company
name

• IMap (distributed map) used for caching

What We Learned…

• Trading off flexibility and performance

• Enrich from local memory

• Remote lookup

• Enrichment from a cache

• https://blog.hazelcast.com/ways-to-enrich-stream-with-jet/

• Operators: hashJoin, mapUsingImap, mapWithContext

• Jet Cluster provides powerful caching services

https://blog.hazelcast.com/ways-to-enrich-stream-with-jet/

Honorable Mentions

• Hazelcast is a powerful distributed in-memory framework

• Caching: read/write-through, JCache support

• Messaging: buffer to connect multiple Jet jobs (journal)

• Storage: in-mem NoSQL for low-latency use-cases (source, sink)

• Coordination: unique

• Polyglot (Java, Scala, C++, C#/.NET, Python, Node.js, Go)

• These are IMDG clients – Jet pipelines are Java-only

Hazelcast as a Platform - Train Demo

OpenTTD (C++) Jet Cluster

Hazelcast C++ client
Ingested position

points

Detected collisions

Collision Detection Jet
Job

Collision Event Handler
(Hazelcast Client

Service)

{ Train 1 ,
x position ,
y position }

{ Train 1 } , { Train 2 }

https://github.com/vladoschreiner/transport-tycoon-demo

https://github.com/vladoschreiner/transport-tycoon-demo

Coffee Break

+2:00
15 Minute Break

Before we start, please

1. Download Hazelcast Enterprise

https://hazelcast.com/download/customer/#hazelcast-jet

2. Send me an e-mail to vladimir@hazelcast.com

• To get the slides and the trial license

• Useful before 4th part of the workshop

https://hazelcast.com/download/customer/
http://hazelcast.com

Starting at 2 PM

Aggregations and
Stateful Streaming

Stateful Processing

• Map with a state

• Remembers events or intermediate results

• Use-Cases:

• Pattern matching

• Correlation (of multiple events)

• Complex Event Processing

Stateful Processing API in Jet
items.mapStateful(

// Object that holds the state. Must be mutable!

LongAccumulator::new,

// Mapping function that updates the state

(sum, currentEvent) -> {

sum.add(currentEvent); // Update the state object

return (sum.get() <= THRESHOLD)

? null // Nothing is emitted

: sum.get();

}

);

Lab 3: Stateful Processing

• Detect if price between two consecutive trades
drops by more then 200

• Return the price difference if drop is detected

• Ignore various trade symbols for now

Aggregations

• Combine multiple records to produce a single value

• Aggregate operation - How to aggregate records?

• Examples: sum, average, min, max, count

• Scope - Which data to aggregate?

• Frequency - When is the result provided?

• Special case of Stateful processing

Scope - which data to aggregate?

• Streaming data is mostly time series

• Windows - time ranges to assign records to

Tumbling
(size)

1 2 3

3

Sliding
(size + step)

1

2

Frequency - When is the result provided?

• When window closes

• All the data in the window were processed

• Non-practical for long time ranges (hour and more)

• In specified time intervals - early results

• With each item

• Use stateful mapping

Windowing API in Jet

items.window(windowDef).aggregate(aggregateOperation)

com.hazelcast.jet.pipeline.WindowDefinition

sliding or tumbling, .setEarlyResultsPeriod()

com.hazelcast.jet.aggregate.AggregateOperations

count, sum, average, min, max, toList …

Lab 4: Windowing
• Compute sum of trades for 3-second intervals

• Tumbling window

• Output each 3 seconds, should be roughly constant

• Compute sum of trades for 3-second intervals, result so far each
second

• Tumbling windows with early results

• Output each second, grows for 3 seconds and then drops

• Compute sum of trades in last 3 seconds, update each second
• Sliding windows

• Output each second, should be roughly constant

Grouping
• Global aggregation

• One aggregator sees the whole dataset

• Complex Event Processing use-cases (if A is observed after B then do C)

• Keyed aggregation

• GROUP BY from the SQL

• Splits the stream to sub-streams using the key extracted from each record

• Sub-streams processed in parallel

• Grouping API in Jet
• users.groupingKey(User::getId)

Grouping

• Global aggregation

• One aggregator sees the whole dataset

• Complex Event Processing use-cases

• if A is observed after B then do C

• Keyed aggregation (SQL GROUP BY)

Trades

AAPL

GOOGL

MSFT

averageLong(Trade::getPrice)

averageLong(Trade::getPrice)

averageLong(Trade::getPrice)

Grouping API

• Groups event objects by specified key

• Groups processed in parallel

users.groupingKey(User::getID)

Lab 4: Windowing with Grouping

• Compute sum of trades per
ticker in last 3 seconds, update each second

• Per-ticker results for the previous lab

Timestamps

• Timestamps necessary to assign records to window

• Uses wall clock - Ingestion-time processing

• Simple but possibly not correct!

• Timestamp embedded in record - Event-time processing

• Need to specify how to extract the timestamp

.withNativeTimestamps()

.withTimestamps(r -> r.getTimestamp())

.withIngestionTimestamps()

Event Time Processing

• No ordering

• How long will we wait for stragglers?

• Watermarks

• “No older items will follow."

• Trading off latency for correctness

10 - 19 20 - 29 30 - 39

11 14 12 33 29 41 38 2 46
Events

(timestamps)

Frames

30 second window

40 - 49

Aggregations and State - Takeaways
• Operator remembers the events or intermediate results

• Aggregations is a special case: combines multiple input records to a
single value

• Define the scope of the aggregation: whole dataset or a window

• Aggregated result is provided

• With each record

• When the scope has been processed

• Something in between

• Split the stream using a key and aggregate the sub-streams (GROUP
BY)

Honorable Mentions

• Custom aggregation API

• Stateful mapping with timeouts and custom evictor

• Cascade aggregate operations

• Aggregate aggregations (e.g. maximal average value)

• Flight Telemetry Demo

• Use grouping for join and correlation

• Windowing to be added for streaming join

• https://docs.hazelcast.org/docs/jet/latest/manual/#cogroup

https://docs.hazelcast.org/docs/jet/latest/manual/
https://docs.hazelcast.org/docs/jet/latest/manual/
https://github.com/hazelcast/hazelcast-jet-demos/blob/master/flight-telemetry/src/main/java/com/hazelcast/jet/demo/FlightTelemetry.java
https://docs.hazelcast.org/docs/jet/latest/manual/

Streaming flight data:
Type of aircraft
Aircraft position

DEMO: Flight Telemetry
“Jets with Jet” - https://github.com/hazelcast/hazelcast-jet-demos

• Filter to defined airports only
• Sliding over last 1 minute,

detect altitude changes
• Based on the plane type and

phase of flight, calculate noise
and CO2 emissions

https://github.com/hazelcast/hazelcast-jet-demos

Stretch Break

+3:05
5 Minute Break
Please do not leave the room

Scaling and Operations

Deployment Options

• No separate process to manage

• Prototyping, Microservices. OEM.

• Java API for management

• Simplest for Ops – nothing extra

• Separate Jet cluster

• Isolate Jet from the application lifecycle

• Jet CLI for management

• Managed by Ops

Client/ServerEmbedded

Java API

Application

Java API

Application

Java API

Application
Java API

Application

Java API

Application

Java API

Application

Java API

Application

We switch to
client-server

now!

Jet Management Center

Command Line Tools
• /bin/

• Command line tooling for Jet

• jet-start.sh, jet-stop.sh

• Control cluster lifecycle

• jet.sh

• Control job lifecycle

• Command-line alternative to the Java API

Scaling and Fault Tolerance

• Jet clusters can grow and shrink elastically

• Add members to accommodate workload spikes

• Workload is dynamically distributed across all cluster members

• Resilience through redundancy

• Fault tolerance (network, server)

• Cluster redistributes workload to available members

How Jet Fault Tolerance Works

• Regular backups (snapshots)

• Restart computation from last snapshot if topology changes

• Single node failures/additions - snapshot restored from replicated
memory storage

• Preconditions:

• Replayable source (e.g Kafka, Hazelcast Event Journal, not JMS)

• Deterministic (no mutable lookup tables, no randomness)

• Idempotent sink

Job Upgrade
• Allow jobs to be upgraded without

data loss or interruption

• Processing Steps

1. Jet stops the current Job
execution

2. It then takes the state snapshot of
the current Job and saves it

3. The new classes/jars are
distributed to the Jet nodes

4. The job then restarts

5. Data is read from the saved
snapshots

• All of this in a few milliseconds!

Management
Center

CLI Java API

Snapshot

Version A
Continue (A/B) or
finish (upgrade)

Version B

Lossless Recovery: Before Lights Out

• Jobs, Job State, Job
Configuration configured to be
persistent with Hazelcast’s Hot
Restart Store capability

• Checkpoints are similarly
configured to be Hot
Restartable

• Jet is configured to resume on
restart

Hot Restart
Store

Hot Restart
Store

Hot Restart
Store

Lossless Recovery:
Automatic Job Resumption

• When cluster is restarted, Jet
discovers it was shut down with
running jobs

• Jet restarts the jobs

• Checkpoints are recovered

• For streaming, rewindable sources
are rewound using saved offsets
(Kafka, Hazelcast IMap, Hazelcast
ICache events).

• If the source cannot be fully
rewound, the job is terminated with
error, or continued, depending on
configuration

• Batch sources are resumed from
last pointer, otherwise from the
beginning

Source Stream

0 1 2 3
Checkpoints

After Restart, resume from checkpoint 3:

Hot Restart
Store

Hot Restart
Store

Hot Restart
Store

Rewinding

3 4 5 6

Ops demo

https://github.com/vladoschreiner/hazelcast-jet-job-
upgrade/tree/instructions

https://github.com/vladoschreiner/hazelcast-jet-job-upgrade/tree/instructions

Lab 5: Start Jet from cmd line
• Get Jet ZIP and unpack it

https://hazelcast.com/download/customer/#hazelcast-jet

• Jet must be configured not to join clusters within the room

• Disable multicast in ${JET}/config/hazelcast.xml

• Enable local discovery by adding this to <join>

• Start a node
${JET}/bin/jet-start

<multicast enabled=”false”>

<tcp-ip enabled="true">
<member>localhost</member>

</tcp-ip>

https://hazelcast.com/download/customer/

Lab 5: Submit a Job using CLI

• Get the JAR by building the job-
deployment module of the training project
(mvn package)

• Submit the job

• Use the JAR produced

${JET}/bin/jet.sh submit

${LABS}/job-deployment/target/job-deployment-3.*.jar

Lab 5: Management Center

• Plug in the license to the MC to see the cluster

• ${HZL}/hazelcast-jet-management-center/application.properties

• Start MC

• ${HZL}/hazelcast-jet-management-center/jet-management-center.sh

• http://localhost:8081

• Check the cluster and job state in the MC

http://localhost:8081/

Lab 5: Upscale the Job

• Add a node and observe the changes in the
MC

${JET}/bin/jet.sh submit

Scaling and Operations - Takeaways

• Jet can run embedded (in-process) or in a Client-Server mode

• Elastic clustering for scaling and increasing resilience

• Preconditions: replayable source, deterministic computations
without side effects, idempotent sink

• Tools for monitoring and managing the cluster and the jobs
• Command line tools in /bin

• Management Center

Honorable Mentions

• Other deployment options

• Docker

• Kubernetes

• Hazelcast Cloud

• Job Upgrades

• Lossless Recovery

• Security

Time Check

+3:45
15 minutes left!

Conclusion/Q&A

• Online training - https://training.hazelcast.com/stream-processing-essentials
• Jet website - https://jet.hazelcast.org/

• especially the “Developer resources” section

• Reference card - https://dzone.com/refcardz/understanding-stream-processing

• Communities

• Stack Overflow - Tag “hazelcast” or “hazelcast-jet”

• Google Group- https://groups.google.com/forum/#!forum/hazelcast-jet

• Gitter chat - https://gitter.im/hazelcast/hazelcast-jet

• Commercial
sales@hazelcast.com
or
https://hazelcast.com/

Helpful Resources

https://training.hazelcast.com/stream-processing-essentials
https://jet.hazelcast.org/
https://dzone.com/refcardz/understanding-stream-processing
https://groups.google.com/forum/
https://gitter.im/hazelcast/hazelcast-jet
http://hazelcast.com
https://hazelcast.com/

Thank You

