
@jeronimomtnz

jeronimo.mtnz@gmail.com

DataArt
Technology Consulting & Solution Design

years in operation

21

3500+
projects

specialists

2600+

10
countries

cities

20

$140M
revenue in 2018

A system that is in use, because it’s valuable for a
business or it’s users…

… but it's difficult to update and improve, or even to
keep it functioning correctly.

What is a legacy software system?

● Can’t add new features easily ● Slow to enter new markets, launch new products or
on-board new clients

● Very difficult to fix bugs ● Cause frustration on users and clients

● Can’t improve the design to prepare it for future
changes

● Unable to comply with new legislation, or to keep up
with competitors

● It’s slow and using too many resources ● Unable to retrieve business status on time for
important decisions

● Developers don’t want to deal with these systems ● It’s difficult to recruit and retain specialists

● More time putting down fires than creating value ● Resources wasted on manual tasks and workarounds

Why is it a problem?

Technical problems Business problems

● Scarcity of software maintenance knowledge base.

● Excessive amount of dependencies.

● Technical debt.

● Fear of making changes.

● Miscommunication between Business and Technical teams.

Why do systems become legacy?

● Code is not an asset, it’s a liability, tests
and technical documentation also need
to be maintained and updated.

● The real value in the team is the
knowledge of the business process
acquired, not the code or the
documentation. You need the why.

● Objective: Having the business
knowledge, systems architecture and
lessons learned into a single brain.

Fear of making changes

Legacy systems are a communication problem

● Educate the business to make them
aware of the real cost of maintaining
a production system, and the
consequences of not doing it
properly.

● Use analogies. E.g. Housekeeping,
remodeling a building without
blueprints

● Maintaining code needs a budget,
you need to negotiate it.

1. No original developers

2. No developers with knowledge

3. No documentation

4. No access to users or domain experts

5. No CI

6. No tests

7. No version control

8. No source code

9. No deployment details

Nine circles of legacy hell

● Denial -> It can't be that bad, users have been using it for years

● Anger -> Who the f*** designed this system? and why did they do this?
why????

● Bargaining/Realization -> Can I do a re-write and kill the old version?

● Depression/Despair -> There is no hope, I'm just wasting my time in this
project.

● Acceptance -> It's the same everywhere, at least I can learn a few
lessons and give a talk about it.

Five Stages of Grief

Understanding the system

● Development team: Overview of the system

● Users: Job shadowing

● Business: Domain experts, which problem is

the system solving?

● Support: What are the common problems

with the system?

● Inf & Ops: Which resources does the

system need?

● Write all that down!

Extract domain knowledge from people!

Set up a playground

Local ProductionPre-ProductionIntegration

Size of the test (coverage)
Closer to real scenarios

Feedback loop
Control of dependencies

Complexity of the mocked dependencies
Knowledge and effort required to build a consistent state

Cost
Shared

“Show me your flowcharts and conceal your tables,

and I shall continue to be mystified.

Show me your tables,

and I won’t usually need your flowcharts;

they’ll be obvious.”
- Fred Brooks, (The Mythical Man-Month)

Look at the data!

● Generate diagrams from the DB schema:

○ SQLDeveloper (Oracle), MySqlWorkbench (MySql), pgModeler (PostgreSQL)

○ Schemaspy

● For more than 20 tables split it in clusters

○ DBeaver + yED

● Common problems:

○ Missing constraints (Unique, not null, PK, FK) or NoSQL

○ Physical schema all relationships are potentially N to 1

● Solutions

○ Look at the domain classes and ORM mappings

○ Statistics about on the actual content (Data exploration): Tableau, Looker, Jupyter Notebooks, Facets

DB diagrams

Domain Class Diagrams

● Track the code from opposite directions: Interface and Data
layer

● Debugging and breakpoints

● Extra verbose logging: structured, ad-hoc during debugging

● Scratch branch for extra comments and logging
● Make wild assumptions about the behaviour and confirm them
● Sequence diagrams, Call hierarchy, Analyze data flow from/to

Identify processes and data flows

Test, Modify & Refactor

The need for tests

● It's the only sane way of changing code.

● Nobody is infallible, not even yourself!

Dependencies

Dependencies

Dependencies

Seams

Seams

Seams

● Legacy code is a communication problem. As a developer you need to
educate, build realistic expectations and negotiate.

● With the right amount of time, resources and techniques, it does not have
to be painful.

● Maintaining legacy code is the ultimate training for learning how to write
maintainable code.

● Discovering the insights of a business and rescuing a legacy system can
be very rewarding.

Summary

